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SUMMARY 

Under high received signal conditions, voice channel quality 
in FDM telephony transmission over an SSB-PM satellite com- 
munication system is limited by dynamic non-linearity and down- 
link differential group delay. This report analyzes the noise 
produced by dynamic non-linearity in elements of the SSB up-link, 
spacecraft phase modulator, and ground receiver demodulator. 
Worst- case channel signal-to-non-linear -noise power ratios a r e  
developed in t e rms  of the coefficients of a power series express- 
ing the non-linear characteristic. The group delay problem is 
not treated. Four appendixes discuss in detail the calculation of 
the autocorrelation function, the evaluation of spectral convo- 
lutions, the determination of the power se r i e s  coefficients, and 
CCIR terminology and multichannel loading procedures for FDM 
telephony. 
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ANALYSIS OF NON-LINEAR NOISE 
IN FDM TELEPHONY TRANSMISSION OVER 

AN SSB-PM SATELLITE COMMUNICATION SYSTEM 

by 
Paul J. Heffernan 

Goddard Space Flight Center 

INTRODUCTION 

This report analyzes the effects of certain non-linearities in the transmission of frequency- 
division- multiplex (FDM) telephony over an SSB-PM communication link of the advanced Syncom* 
type. 

Voice channel quality in an FDM SSB-PM link is determined by two factors: thermal noise, 
and intermodulation or non-linear noise. Non-linear noise is the unintelligible crosstalk in a 
voice channel due to the harmonics and intermodulations of the complex multichannel signal 
generated by system non-linearities. It resembles thermal noise 'to the ear  but, unlike thermal 
noise, vanishes when the multichannel signal is removed. 

With a weak received signal, thermal noise usually limits channel quality. However, with a 
strong received signal, thermal noise may be insignificant as compared with the non-linear 
noise; and in this case system non-linearities limit the channel quality. Under certain conditions, 
system parameters can be optimized by trading one type of interference for the other. 

There a r e  two important sources of non-linear noise in an SSB-PM system: dynamic non- 
linearities and down link differential group delay. Dynamic non-linearities are encountered in 
the amplitude characteristics of base-band multichannel amplifiers, klystrons, and phase 
modulators and discriminators. 

Differential group delay is encountered on the down link when the instantaneous phase deviation 
+( t )  of the modulated carr ier  is modified non-linearly by a passive selective circuit as a function 
of the instantaneous frequency &( t ) . 

This paper analyzes the effects of dynamic non-linearities in detail, and does not treat the 
group delay problem. 

The principle source of non-linear noise in the SS-B up-link is the dynamic characteristic of 
- the ground transmitter power amplifier. Multichannel telephony has a peak-to-average ratio of 

*Synchronous Communications Satellite. 
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Figure 1 -Typical dynamic characteristic 
of a klystron power amplifier. 

Figure 2-Non-linear characteristic of a 
phase modulator. 

approximately 13 db (Reference 1). Hence, the ground transmitter power amplifier must be linear 
over a considerable dynamic range, and in general is required to operate well below saturation. 

In the spacecraft, all converters and amplifiers prior to the phase modulator must be dynam- 
ically linear. Because of the multiple access consideration, these units must be designed for 
considerably greater dynamic ranges than must the ground transmitter; thus linearity may be a 
problem despite the low levels at which these units operate. 

In the PM down link, non-linearities in the characteristics of the spacecraft phase modulator 
and ground receiver demodulator introduce non-linear noise in exactly the same manner as do 
dynamic non-linearities in the up-link. 

The CCIR recommends (Reference 2) that for purposes of analysis and testing, a multichannel 
telephony signal may be represented by a band of white Gaussian noise. Hence, either the instan- 
taneous amplitude of the multichannel signal (on the SSB up-link) or the instantaneous phase 
deviation of the modulated carrier (on the PM down-link) may be represented by a real  stationary 
random variable x( t ) of Gaussian statistics and narrowband white spectral density. 

Where the non-linear characteristic of an element can be expressed as a power ser ies  of the 
input X( t ) ,  the output ratio of channel test-tone power to the weighted non-linear noise power 
produced by the element can be computed in terms of the power se r i e s  coefficients and the 
variance of X( t ) .  For a system of N channels, CCIR multichannel loading factors relate the mean 
square value of X( t )  to the power or mean square phase deviation corresponding to channel 
test- tone. 

Hence, the performance of a non-linear element in the SSB-PM link can be specified in t e rms  
of its power series coefficients and how hard it is driven by a standard signal. 

DESCRIPTION OF METHOD 

In the time domain, the output y( t )  of a zero-memory non-linear device may be generally 
expressed as a power series of the input x( t ); 

y ( t )  = ax(t)  + pxz ( t )  + y x 3  ( t )  + 6x4 ( t )  + - * *  
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For systems and devices which a r e  essentially linear, and only deviations from linearity are 
being considered, the power series converges rapidly, and terms higher than the cubic may ordi- 
narily be ignored. Where basically non-linear devices (rectifiers or  limiters) are being treated, 
higher order terms must be included for an accurate representation. 

In the frequency domain, the power spectrum of the output y(  t )  may quite generally be 
obtained from a knowledge of x( t ) and the coefficients a ,  p ,  y etc. 

For the present case where x( t )  is a stationary random variable, the power spectrum of y( t ) 

can be calculated by using the Wiener-Khinchin theorem and the statistical properties of X( t )  

(probability density function, autocorrelation function, spectral density, etc.) 

The Wiener-Khinchin theorem states that the autocorrelation function of a sample function of 
a random process and the spectral density of the process form a Fourier transform pair. If x ( t )  
is a real  sample function of a stationary random process, we have that its autocorrelation function 
is defined as 

and is independent of time. 

The theorem states that 

where Sx ( f )  is the spectral density of the random process. 

If x( t ) is the input to a non-linear device with output y( t ), we have the output autocorrelation 
function 

R y ( 7 )  = y ( t ) y ( t  + T )  ; 

and we can operate on this to get the spectral density GY ( f ) of y( t ) : 

~ ~ ( f )  = 3py(7)1 

This method of determining the output spectrum of a non-linear device is quite general and 
very powerful. 
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For FDM telephony a knowledge of the output spectrum permits the determination of channel 
signal-to-noise ratios directly. The method used here may be considered an analytical equivalent 
of the noise-loading procedures widely used to test  FDM equipment and systems (Reference 3). 

The heart of the problem is to determine the output autocorrelation function Ry (7). This 
demands thorough knowledge of the statistics of the input X( t ) and the power ser ies  coefficients. 
It is possible, but not always desirable, t o  develop a closed form expression for RY (7). For the 
power ser ies  case with Gaussian statistics, we can calculate RY (7) in t e rms  of a power series in 
R~ (T) ,  considerably simplifying the mathematics. 

CALCULATION OF O U T P U T  S P E C T R A  A N D  S/N R A T I O S  

The input to the non-linear element of the SSB-PM system is a stationary Gaussian functional 
of zero mean and variance 2; i.e., we have 

The autocorrelation function is 

R x  (7) = x ( t )  x ( t  f 7 )  

and 

The spectral density Sx ( f ) of the multichannel signal is defined as the average power per 
unit bandwidth and is an even (two-sided) function of frequency. 

From the Wiener-Khinchin theorem, 

and 

Rx (7) = Sx ( f )  e j w T  df 
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Assuming a converging power ser ies  expresses the non-linear characteristic, the output is 

The output autocorrelation function is 

Truncating the power series, we have 

and R y  ( 7 )  will be the sum of the expectations of each of the t e rms  produced in the multiplication. 
It is at this point that the - statistics of x( t )  enter the analysis. For X( t )  a Gaussian functional of 
zero mean and variance xZ , the autocorrelation function (Appendix A) is 

- 
+ [ a z + 6 a y x Z + 9 y 2 ( ~ ) z ]  R x ( 7 )  

The power spectrum GY ( f )  of the output y( t )  can now be obtained by forming the Fourier trans- 
form of the entire expression. 

The first  term represents dc energy, since the transform of a constant in the time domain is 
a delta function a t  zero frequency: 

For the purpose of computing the output spectrum, this t e rm can be ignored. 
- 

The terms in the coefficients of Rx ( 7 )  and R: ( 7 )  proportional to xZ represent second order 
effects which may be disregarded for the purpose of computing the output spectrum.* The 

~ _ _  
*This i s  so i f  the power series for y(t) converges rapidly. However, terms like 6 ~ x 2  are interesting in their own right. They indicate 
that the apparent linear gain of the non-linear element depends on the variance of the Gaussian input. Lewin (Reference 4)  has  shown 
the instantaneous waveforms corresponding to these spectral tenns are always in exact phase coherence with the freely transmitted 
waveform. Hence, these can hardly be called distortion spectra. 
the action of a tuned limiter, and provide a convenient means of determining the power series coefficients a, p, y, etc., of a non- 
linear element (see Appendix B). 

For a single tone input, terms of this type mathematically represent 
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, 

autocorrelation function is then written 

The first t e rm is transformed to  yield a first order spectrum G, ( f )  of the freely transmitted 
signal. 

Note that the effect is simply that of a linear bandpass filter of gain a. 

The other terms yield second, third, and fourth order spectra proportional to convolutions of 
the input spectrum Sx ( f ) with itself. 

G, ( f )  = 6 y z S x  ( f ) * S x  ( f ) * S x ( f )  . 

These convolutions are evaluated in Appendix C .  

It may be seen that the output signal to non-linear noise power ratio at any frequency is 
given by 

To evaluate the spectral convolutions, it is necessary at this point t o  define more completely the 
input spectral density Sx ( f )  for the two situations of interest in this analysis, i.e., multichannel 

telephony spectra at baseband and IF. Figure 3 

( a )  BASEBAND 

shows these two cases. 

In either case, the spectral density is the 
average power per unit bandwidth, and has the 

-f value 

xz w, = - m "' n 2B 

I 
I I 
I I 

within the band and is zero outside the band. 
Spectral densityis an evenfunction of frequency --f 

(b) IF 
-fo-F -fo -fo+$ lo f o - 7  B fo fo+$ 

Figure 3-Multichannel signal spectra at baseband and IF. s x  ( f )  = Sx(-f)  1 
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and we have that 

- 
S x ( f ) d f  = x 2  . 

J - m  

Baseband Case 

The spectrum of the multichannel signal at baseband is shown in Figure 3(a). In reality, the 
spectrum does not extend to zero frequency; but for the purpose of this report no significant 
e r r o r  is introduced by this representation, since dc levels produced by system non-linearities 
are filtered out by the natural system bandwidth limitations and need not be considered. 

The convolutions S x  ( f )  * S, ( f )  and Sx Gf ) *Sx ( f ) * Sx ( f )  for the baseband case are evaluated 
in Appendix C and shown in Figure C7. The baseband non-linear noise spectra G, ( f )  and G, ( f )  

obtained on this basis a r e  shown in Figure 4, along with G,  ( f ) ,  the spectrum of the freely trans- 
mitted signal. 

The ratio of signal power to non-linear noise power in a slot of width Af at the bottom of the 
baseband (corresponding to the worst channel) is then 

and in general, in any channel, 
I G l ( f )  

a2 W, 
- _- . ps 
pn ' 4b2BW: + 18y2B2W; rh: 

- B  0 B - f  

From the definition of the input spectral density 
1Gp(f) 

X 2  

2 B '  w, = - 

we have 

-- 2p2 [28W02] L 
-2 B 0 28 - f  

-38 6 3B - f  Note that the signal-to-noise power ratio is given 
only in t e rms  of the power series coefficients 
squared and the variance of the Gaussian input. 

Figure 4-The baseband output spectra 

GI (f), G2(f), and G3(f). 
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IF Case 

The spectrum of the multichannel signal at IF is shown in Figure 3(b). 

The convolutions Sx ( f )  * Sx ( f ) and Sx ( f )  * Sx ( f )  * S x  ( f ) for the IF case a r e  evaluated in 
Appendix C and shown in Figures C10 and C11. The IF output non-linear noise spectra G ,  ( f )  and 
G, ( f )  obtained on this basis are shown in Figure 5, along with GI ( f )  , the spectrum of the freely 
transmitted signal. It is immediately clear-that for the IF case, all of G ,  ( f )  and the portion of 
G, ( f )  centered at +3f,  f a l l  outside the region of the spectrum occupied by GI  ( f )  , and hence may 
be assumed to be filtered out by system bandwidth limitations. The portion of G ,  ( f )  centered at 
t f ,  is the spectrum of non-linear noise that cannot be filtered out. 

The ratio of signal power to noise power in a slot bf width Af at f ,  (corresponding to the 
worst channel) is 

P B  [ c l  (fo)] Af , 

pn [G, (fo)] Af ’ 
- %  

- fo 

I 

-3f0 

- f  

- f  -2f0 2 f o  - B  2fo 2fo + B  

Figure 5-The IF output spectra G, (f), G2(f), and G3(f). 
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and in any channel 

From the definition of W, , 

ps 8 1 - P" 2 n-(Sm* 
Again, the signal to noise power ratio is in terms of the squares of the power series coefficients 
and the variance of the Gaussian input. 

APPLICATION TO ADVANCED SYNCOM 

The formulas developed above a r e  directly applicable to certain elements of the SSB-PM 
FDM telephony 

The result 

mode of the proposed advanced Syncom communication satellite system. 

for the baseband case 

applies to baseband amplifiers at the ground transmitter and ground receiver, and also the space- 
craft modulator* and ground receiver phase demodulator. 

The result for the IF case, 

applies to the SSB exciter chain and power amplifier of the ground transmitter, and the front-end 
and IF amplifier of the spacecraft receiver. 

These signal-to-noise power ratios are analytical equivalents of the "noise-to-noise" power 
ratio (NPR) measured in a noise loading test as described by White and Whyte, (Reference 3).  
Since it is customary to characterize the performance of international telephone circuits in t e rms  
of a channel test-tone to psophometrically-weighted-noise power ratio, it is necessary to convert 
the formulas developed above into this form. This is readily done by applying the appropriate 
CCIR loading factor and NPR conversion factor as discussed in Appendix D. 

*It should be pointed out that the phase modulator proposed for the advanced Syncom is unique in that it effectively performs a down- 
conversion of the multichannel signal in the modulation process. The input to the modulator is at IF, but the phase spectrum of the 
modulated carrier i s  at baseband, and demodulation of the carrier yields the multichannel signal at baseband, not at IF. 
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To illustrate, we consider the linearity requirements of a SSB - ground power amplifier for  
600 channels. We use the formula for the IF case, and interpret x2 as the mean multichannel 
signal power dissipated through unit resistance into the amplifier: 

The NPR conversion factor for 600 channels is 19.2 db, meaning that the noise-to-noise ratio in 
a 3.1 kc slot measured in a noise loading test or calculated analytically is 19.2 db poorer than 
the corresponding channel test-tone to psophometrically-weighted-noise power ratio: 

The loading factor of 600 chahnels is 12.8 dbm,, meaning that the mean multichannel signal power 
is 12.8 db above the power of a channel test-tone: 

I w e i g h t e d  

This result now specifies how hard the power amplifier may be driven in te rms  of its power 
series coefficients; and conversely, for a given power level and allowable non-linear noise level, 
the permissable ratio of the power ser ies  coefficients is specified. 

As a second illustration, we consider the linearity requirements of a ground receiver - phase 
demodulator for 1200 channels. We - use the formula for the baseband case and interpret x Z  as 
the mean square phase deviation + 2  of the modulated car r ie r  into the demodulator: 

The NPR conversion factor for 1200 channels is 19.3 db, and the loading factor is 15.8 dbm,. 

pt t 
Pn 

Again, this result relates the allowable non-linear level in the worst channel to the power series 
coefficients and the level (in this case, mean-square phase deviation) of the standard channel 
test- tone. 

10 



It should be noted that the results developed here are for a single non-linear element in the 
SSB-PM system. Non-linear noise accumulates as the signal progresses through the system 
(Reference 5) and the noise from different elements tends to add up on something between a volt- 
age basis (correlated noise) and a power basis (uncorrelated noise). Worst- case performance 
can always be calculated by assuming correlation between the non-linear noise sources. 

(Manuscript Received September 20, 1963) 
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Appendix A 

Computation of Output Autocorrelation Function 

The output is 

y ( t )  = u x ( t )  + BxZ(t)  + W 3 ( t )  + * * .  

and its autocorrelation function is 

Truncating the power series,  we have 

y ( t ) y ( t  + T )  = [ax( t>  +,8x2(t)  + y x 3 ( t ) ]  . [ax(t + T )  +Px2(t + T )  + y x ~ ( t  +,>I 
Carrying out the indicated multiplication, 

y ( t ) y ( t  t T )  
= UZX(t)X(t + T )  + uPx(t) x 2 ( t  + T )  + a y x ( t ) x 3 ( t  + T )  

The autocorrelation function is the sum of the expectations of each of these terms. 

Middleton* gives a formula for the expectation of the product of Gaussian variables which is - 
directly applicable since X( t )  is Gaussian of zero mean and variance x Z .  

ALL 
P A I R S  

where N is a positive integer. Formula (b) is intuitively obvious, since 

- 
x = o  

*Middleton, D., "An Introduction to Statistical Communication Theory," New York: McGraw-Hill Book Company, 1960 p. 343, eq. 7.28. 
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and 

Adopting the notation 

+ = X ( t ) ,  

e = x ( t + T ) ,  

- 
so that Rx ( 7 )  = 48, and observing that 

we note that 
the terms of R~ (7) . Those which exist are 

= 0 when M t N = an odd integer. This immediately does away with several of 

Clearly, the first term is identically a' R~ ( 7 ) .  The other terms can be written out in terms of 7 
and Rx(r). 

The other expansions will be worked through completely, following Middleton: 

14 



= 9(?) R , ( T )  + 6R: ( 7 )  ; 

Thus, finally, 

+ [6r2]  R: ( 7 )  . 

This is the complete expression for the autocorrelation function R, ( 7 )  of the output of a non- 
linear device with a third order power ser ies  representation and a Gaussian input of zero mean 
and variance 2. 

The output spectrum is the Fourier transform of R Y  (7): 

cy ( f )  = 3 [ R ~  = JI R Y  ( 7 )  e-joT d-r 
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Appendix B 

Determination of Power Series Coefficients 

The coefficients a, p, y ,  etc., of the power ser ies  representation of the non-linear device may 
be determined either analytically or experimentally in a number of ways. For the case of the IF 
spectra, where the ratio y/a determines the non-linear noise, there are two simple ways to get 
y/a experimentally. 

Harmonic - Margin M e a s u r e m e n t  ( sma l l  signal case )  

If the input to the non-linear device is a single tone 

x ( t )  = Vcoswt 

the output y( t )  will contain harmonics with relative amplitudes which can be readily determined 
by a wave analyzer: 

y( t )  = A, COS w t  f A, COS 2 w t  t A, COS %t + * * * 

The harmonic margins A A, and A,/A~ can be used to evaluate the relative values of a, p, and y. 
We have, generally, 

2/ 

= avcoswt t m 2 c o s 2 0 t  + y ~ ~ c o s ’ w t  

l l  = aV cos w t  f p v 2  [: f 3 cos zwt] f yv3 [+ cos ut .t cos 3wt f - * 
1 

or, combining terms and dropping the dc contribution, 

BV YV3 v cos ut f 2 cos 2wt f 4 cos 3ut f * - . 

v << 1 (small signal case), 

y( t )  5 aV cos w t  + 2 BV cos 2wt + 7 YV3 cos 3dt + * * 

17 



and the harmonic margins are 

or  conversely 

Gain Variation Measurement (large signal case) ~~ 

Using the same expression as above, 

y( t = [a + +] v cos w t  + 7 pvz cos 2 w t  

assuming harmonic terms are filtered out, and removing restrictions on the magnitude of v, we 
have that 

where the normalized gain is defined as 

yo. 
a x ( t >  G =  

If the magnitude of the input signal is varied by AV, there is a change in gain 

Under 
either 

certain conditions this is an excellent way to measure the ratio y / a  . This ratio may be 
positive or negative in sign; e.g., for a limiting amplifier, the sign would be negative. 

18 
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Appendix C 

Evaluation o f  Spectral Convolutions 

To evaluate the Fourier transform of the output autocorrelation function as computed in Ap- 
pendix A, we must compute the transforms 

and 

where Rx ( 7 )  is given by 

R,(T)  = j-bX( f )  e j w 7  d f  = x( t )  x( t t T )  , 

Rx(0) = j-)x ( f ) d f  = x 2 ( t )  . 

We have that 

or, more concisely, introducing a new dummy variable A to avoid confusion, 

Rx ( 7 )  Sx ( A )  eJznAT e-Jw7 d A  d7 
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This result is known as the Bore1 or convolution theorem. Similarly, 

It is required to compute S, ( f ) * S, ( f ) and S, ( f ) * S, ( f ) * s, ( f )  for baseband and IF input spectra 
as shown below in Figures C1 and C2. 

To do this, we start with the baseband spectrum (which we now designate S, ( f ), and compute 
s ,  ( f ) * S ,  ( f )  and SL ( f )*S,  (f)*s, (0 . These results a r e  then used to get the results for the IF 
spectrum. 

To get s, ( A  - f ) ,  S, ( f )  is displaced to the left (for positive A) and then folded about the point 
f = 0 (Figure C3). 

- 
-f 

Figure C1 -The input baseband spectrum S, (f). 

For valuefi of displacement less  than -2B, 

there is no overlap and the convolution is zero. 
At h = - 2 ~ ,  the displaced function s tar ts  to 
overlap s, ( f )  , and the convolution has a 
value 

s , ( f ) * S , ( f )  = (Wo)(Wo)df = W i ( 2 B + h )  . 

This expression holds for values of displacement 

I I 

Figure C2-The input IF spectrum S, (f). 

WO 

i' , 
O < A < 2 B  

I 
- B t A  B + A  -f 

Figure C3-The spectrumsL (A - f) for a small 
positive displacement h. 

-2B < A '< 0 

For positive values of displacement, the 
limits of the integral must be changed, and the 
convolution (Figure C4) is 

2B Wo2 A 
- 2  B 0 2 8  -f 

Figure C4-The spectrum of the convolution S,(f) *sL (f). 
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The abscissais frequency, which we label f (in- 
stead of A ) ,  and the ordinate is spectral density. 
Note that the symmetry of S, ( f )  produces a 
convolution which is an e v e n  function of 
frequency . 

To e v a 1 u a t e the iterated convolution 
S, ( f ) * S, ( f ) * S, ( f ), the piecewise technique 
described by Lee* is used. The convolution 
s, ( f )  * s, ( f ) as computed above is broken into 
two auxiliary functions g ( f )  and h ( f ) ,  each is 
convolved separately with S ,  ( f )  , and the re- 
sults are superposed. In Figure C5 (a through 
g) the auxiliary functions g ( f )  and h ( f )  a r e  
shown, and three conditions of displacement of 
S ,  ( A  - f )  a r e  shown. The "boxcar" slides from 
left to right as A goes from - to a. 

By careful inspection, i t  is observed that 
the convolution of S, ( f )  with g(  f ) is given by 

where 

( b )  
-2 B 0 

I h ( f )  

- f  

-Wo2 ( f - 2 8 )  

0 28  - f  

A + B  

(Wo) (Wt) ( f  + 2B) d f  , -3B 5 A 5 - B, 
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*Lee, Y.w., "Statistical Theory of Communication," New York: Figure C5-The auxiliary functions g(f) and h(f), and 
three conditions of displacement of S,(A- f). John Wiley & Sons, 1960 p. 24. 



Likewise, we have that the convolution of h( f )  with S, ( f ) is given by 

h ( f ) * S , ( f )  = I, + 1, 

where 

-B ’< A ’< B, - -  

B 5 A ‘5 3B; 

and is zero for values of displacement 

The iterated convolution is then 

S , ( f ) * S , ( f ) * S , ( f )  = I, + I 2 + 1 3  + I 4  

Particular attention must be paid to the exact domain of definition of each of the integrals. 

The four integrals are evaluated, graphed, and superposed to yield the result. The f i rs t  two 
a r e  

A+ B 

I ,  = W , ” ( f  + 2 B ) d f  = W,” [$ + 2 B f ]  -2B ; 

-3B 5 A 5 -B ; 
I, = 1 W,” [ 9 B 2 + 6 B X + h 2 ]  , 

0 

1 2  = W,”(f  + 2 B ) d f  = Wd [$ +2Bf]A-B ; 

1 I, = 3 Wd [3B2-2BA-A2] , - B ( A ( B ;  

in which we note that 

I ,  (-3B) = I , ( B )  = 0 , 

I , ( - B )  = I z ( - B )  = 2B2W,3 , 

3 
1,(0)  = B2W: . 
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and the second two integrals are 

-38 

ZB 
- -  W,” ( f  - 2B) d f  = W,” [G - 2Bf] A-B ; 

1 
= - W,” [-9B2 + 6 B A - X z ]  , 

0 B 

-B  0 B 

B ’ Z  A 5 3B ; 

2B 38 

2B 38 

Figure C6-Superposition of I , ,  I,, 1 3 ,  and I ,  to give the iterated 
convolution S ,  (f)* S,(f)+ S, (f). 
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in which we note that 

1 3 ( - B )  = 1 4 ( 3 B )  = 0 , 

I , ( B )  = I4 ( B )  = 2BZW,3 , 

3 
I, ( 0 )  = 2 B2W; . 

The superposition of the four integrals to give 
the iterated convolution S, ( f ) * S, ( f ) * S, ( f ) is 
shown in Figure C6. 

-f 
Using these results, we can now evaluate 

the result for the IF spectrum by inspection. 
The calculated convolutions are shown in Fig- 
u re  C7. Auxiliary convolutions in slightly dif- 
ferent notation can be derived by inspection and 
a r e  shown in Figure C8. 

The IF  spectra S x  ( f )  and S x  ( A  - f )  a r e  
shown in Figure C9. As A increases from -a, 
boxcar IV will overlap boxcar I as A - -2f gen- 
erating a triangular spectrum (Figure C8-b). 

38 
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Figure C7-The spectra of the convolutions SL(f),  
s,(f) *S ,(f), and S,(f) *S,(f) *s,(f). . Figure C8-Auxiliary convolutions. 
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AS the displacement nears zero, boxcars I11 and IV will overlap boxcars I and 11, respectively, at 
the same time, generating a triangular spectrum centered a t  zero frequency (Figure C8-e). A s  A 
increases positively, a triangular spectrum (Figure C8-b) is generated a t  A .= 2 f 0 ,  and the spec- 
trum of the convolution is shown in Figure C10. 

If we now convolve this second order spectrum with S x  ( f )  , we see that as A increases from 
-a, and nears - 3 f 0 ,  boxcar IV (Figure C9) overlaps triangle V, generating a bell-shaped spectrum 
(Figure C8-c) a t  -3f0.  As A increases to -fo,  boxcar IV overlaps triangle VI simultaneously as 
boxcar I11 overlaps triangle V, generating a bell shaped spectrum (Figure C8-f) a t  - f0 .  

For positive h,  a mirror  image results, and we have the result shown in Figure C11. 

It can be seen that a further convolution of s, ( f )  will produce fourth order distortion spectra 
at 0, f 2 f o ,  and +4f0. 
was noted earlier. 

This is not computed because such spectra may be readily filtered out, as 

f l1  I 

- fo 

-fo-A 

I 

- 2 f 0  - B  -2fo -2f0 +B 

5 

fo-A 

Figure C9-The input IF spectra S,(f) and S x  ( A  - f ) .  
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2fo-B 2f0 2f0 + B  - f  

Figure C10-The spectrum of Sx( f )  *S, (f). 
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Figure C11-The spechvm of S,(f)* Sx (f)*Sx (f). 
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Appendix D 

Discussion o f  Channel loading Factor, NPR Conversion 
Factor, and Multichannel Peak Factor 

To avoid ambiguity, it is convenient to specify the intensity of a multichannel signal in terms 
of the power of a single channel test-tone at a point of zero relative level. The CCIR recommends 
desirable multichannel signal levels and allowable noise levels in dbm,, or  decibels with respect 
to one milliwatt at zero relative level. The phrase "zero relative level" refers  to some physical 
point in the communication system where channel test-tone level happens to be exactly 1 mw, or 
0 dbm,. The statement that for 1200 channels the multichannel signal is 15 dbm, means that at any 
point in the system, the multichannel signal power is 15 db above the channel test-tone power, and 
at  zero relative level i t  is exactly 15 dbm, or 31.6 milliwatts. 
factors for busy-hour traffic are 

The CCIR recommended loading 

= -1 + 4 log,,N dbm, , 
ps 

10 log __ 
10 ptt 

and 

P. 
10 log = -15 + 10 logl ,N dbm, , 

l o  ptt 

12 5 N 5 240 ; 

N 240 . 

These equations are graphed as curves (a) and (b) in Figure D1. 

The CCIR noise-power-ratio conversion factor may be regarded as an allowance for the dif- 
ference between channel test-tone level and the portion of the noise-power loading which is ef- 
fectively applied to any one channel in a noise-loading test; i.e., for a 1200 channel system, the 
loading factor is 15.8 dbm,, and the baseband is 5.6 Mc wide. The noise power falling into a 3 . 1  
kc slot is 3.1/5600 of the applied power or -32.6 db with respect to +15.8 dbm,; and i t  is 
-32.6 +15.8 = -16.8 db with respect to 0 dbm,, the channel test-tone power a t  zero relative level. 
Psophometric filtering reduces the noise by 2.5 db, so  the NPR conversion factor for 1200 chan- 
nels is 16.8 +2.5 or 19.3 db. CCIR NPR conversion factors are given as curves (c) and (d) of 
Figure D1. 

For a single speech channel, peaks as high as 19 db above the r m s  level are encountered. 
A s  many speech channels a r e  multiplexed together, the composite signal peak-to-average ratio 
falls off, and for more than 800 channels it levels off at about 13 db. Multichannel peak factors 
from Holbrook and Dixon* are given as curve (e) in Figure D1. 

*Holbrook, B. D., and Dixon, J. T., "Load Rating Theory for Multi-Channel Amplifiers," Bell Syst. Tech J .  18:624-644, Octo- 
ber 1939. 
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Figure D1 -CCIR channel loading factors and conversion factors, and Holbrook-and-Dixon peak factors. 
The conversion factor i s  added to the noise power ratio to give the S/N ratio for 1 mw of tone and noise power 
i n  a 3.1 kc band, psophometrically weighted. The unweighted noise power in a 3.1 kc bond i s  2.5 db greater 
than the psophometrically weighted noise. 
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